OPTIMIZATION OF
RELATIONAL QUERIES

Dr. Gajdos Sandor — Dr. Erés Levente
November 2014 — November 2021
BME-TMIT

CONTENTS

= Overview
= Catalog cost estimation

= Optimization approaches
= Cost based optimization
= Heuristic optimization

OVERVIEW

{ query

relational algebra
expression

evaluator
engine

@ @ statistics @
data

about data

[query

execution
output

plan

STEPS

1. (Syntactical) analysis, compilation
Does it make sense?
Input: SQL statement

Result: relational algebra expression
2. Cost optimization

3. Evaluation

CATALOG BASED COST ESTIMATION

= The following statistical data is stored in the so-called
catalog
= Catalog data about relations
= Catalog data about indexes
= Query cost

= Cost is estimated based on catalog data.

CATALOG DATA ABOUT RELATIONS

= n,.: number of records in relation r

= b, number of blocks storing the records of relation r

= s..: size of arecord

= f» how many records fit in a data block

CATALOG DATA ABOUT RELATIONS

= V(A,7r): how many different values attribute A has in
relation r (cardinality).
= V(A7) = |ma(r)]
= [f Aisakey, then V(4,7) = n,

= SC(A,r): (Selection Cardinality) average number of
records that satisfy a selection condition.
= If Ais akey,then SC(4,7) =1

= In general SC(A4,r) = V(er)

= [f the records of a relation are physically stored together,

then:
n’l"
b = |—
" fr‘

CATALOG DATA ABOUT INDEXES

= f;: number of pointers going out of a node in case of a
tree index, like B* tree

= HT;: number of index levels (Height of Tree)
= HT; = [logfl. br] (B* tree)
= HT; = 1 (hash)

= LB;: a number of leaf blocks (Lowest level index Block)

COST OF QUERY

Definition:

= Number of block reading and writing operations
from the disc (without writing out the result).

= Takes the most time by far - good metric

= By orders of magnitude more costly then performing
operations in the RAM, etc.

COST OF OPERATIONS - OUTLINE

= Selection
= Selection algorithms (basic, indexed, comparison based)

= complex selection
= Join

= Types

= Size estimation

= Join algorithms

= Other
= Filtering repetitions
= Union, intersection, subtraction

10

BASIC SELECTION ALGORITHMS (=)

A1: Linear search

= Cost:
Eqy = br

A2: Binary search

= Requirements:
= Blocks are located continuously on the disk
= The file is ordered by attribute A
= The selection condition is equality on attribute A

= Cost:

Eqp = [logy(by + D] + [T

SC(A,1) ,

11

INDEXED SEARCH ALGORITHMS

Primary index - requires the data file to be physically ordered by the
index attribute (search key). Everything else is a secondary index

A3: Using primary index, if the equality condition is defined on the
key

Cost: EA3 — HTL +1
A4: Using primary index, if the equality condition is defined on a non-
key attribute (the primary index is on the non-key attribute)

SC(A,r)
fr

Cost: Eqy = HT; + [
A5: Using secondary index.
Cost: E4c = HT; + SC(A, 1)
Cost: Eqc = HT; + 1, if A is a key

12

COMPARISON BASED SELECTION - o, (R)

Estimation of the number of result records:

ny

= If v is unknown: -

= If v is known, and the distribution is uniform:

- v —min(4,r)
Naverage = "r max(4,r) — min(4, 1)

13

COMPARISON BASED SELECTION - o, (R)

A6: With primary index.
= [f v is unknown:
Cost: E4 = HT; + %

= [f v is known:

Cost: EA6 — HTl + [fi“ ’
Where c is the number of records for which 4 < v

A7: With secondary index

Cost: Eg7 = HT; +£+—

14

JOIN OPERATION

Definition:
T Mg 1y = 0g(1ry X 13)

Types:
= Natural join
L W Ty = TayuB (UR1.X=R2.X (1 X 7"2))
= OQuter join
= Left outer join: r; * (+)1,
= Right outer join: r;(+) * 1,
= Full outer join: r, (+) * (4+)1;

= Theta join:
r Mg 1, = 0g(ry X 13)

15

JOIN OPERATION: NESTED LOOP JOIN

Given are two relations, r and s:

FOR each record t,- € r DO BEGIN
FOR each record t; € s DO BEGIN
test if pair (t,, t;), fulfills join condition 6
IF yes, THEN add record ¢t,. t; to the result
END
END

= worst case” cost: n, - b + b,

= [f at least one relation fits in the memory, then its cost is: b, + by

16

JOIN OPERATION: BLOCK NESTED LOOP JOIN

FOR each block b, € r DO BEGIN
FOR each block b € s DO BEGIN
FOR each record t,- € b,- DO BEGIN
FOR each record t; € by DO BEGIN
test pair (t,, t;)
END
END
END
END

= ,worst-case” cost: b, - bg +b,

= with a lot of memory: b, + b,

17

JOIN OPERATION: INDEXED NESTED LOOP JOIN

For one of the relations (s) we have an index

Let us put the indexed relation to the inner cycle of the first algorithm

= Using the index, the search can be performed at a lower cost

Cost:
b.+n,-c,

where c is the cost of selection on s.

18

FURTHER JOIN IMPLEMENTATIONS

= sorted merge join
= order relations by the attributes provided in the join condition

= hash join
= one of the relations is accessed through a hash table when looking
for its records matching the records of the other relation

19

FURTHER OPERATIONS

= Filtering repetitions (ordering, and then deleting)
= Projection (projection, then filtering repetitions)

= Union (ordering of both relations, and filtering duplications during
merge)

= Intersection (ordering both relations, then leaving only the
repetitions during merge)

= Subtraction (ordering both relations, and then during merge, we
only leave those elements in the result set, which are only presentin
the first relation)

20

METHODS FOR EVALUATING EXPRESSIONS

= Materialization
= Evaluating a single operation of a complex expression at a time

= Pipelining
= Multiple operations are evaluated in parallel

= The result of an opeartion is immediately transferred to the input
of the next operation

21

METHODS FOR EVALUATING EXPRESSIONS:
MATERIALIZATION

= Canonical format:
Tlcustomer_name (O-balance<2500 (account) X Customer)

TCcustomer_name

= Query tree:

>
T

Gbalance < 2500 customer

account

= Final cost: cost of operations + cost of storing sub-results
= Advantage: Easy implementation

= Drawback: Many storage operations (block operations)

22

METHODS FOR EVALUATING EXPRESSIONS:
PIPELINING

« Parallel evaluation

« Operations create sub-results for the following operation, based on
the sub-results of the preceding operation

« Does not calculate the whole relation (sub-result) at a time

Advantage:

= No temporary storage needed
= Low memory requirement
Drawback:

= Narrows down the algorithms that can be used

23

CHOOSING THE EXECUTION PLAN

Many execution plans are possible for the

same result

Questions to be answered:
« Which operations?

 In what order?

« By which algorithm?

« By which workflow?

One exact
execution plan:

[order to get rid

Meustomer name of second
instances)
N (hash join)
(merge join) [><] depas:tﬂr

pipeline / \rpc]mc

Gbranch_city="Brooklyn” Obalance < 1000

(use index No. 1) (use linear search)

branch account

24

CHOOSING THE EXECUTION PLAN:
COST-BASED OPTIMIZATION

Greedy and wrong strategy:

= Listing all possible equivalent execution plans
= Evaluating each plan

= Choosing the optimal one

Example: In case of expression r; ™ r, X r; = 12 equivalent expressions

(2(n—-1))!
(n—1)!

In more general: to join n relations, equivalent expressions exist.

This would mean too much load for the system.

Solution: Heuristic cost-based optimization

25

CHOOSING THE EXECUTION PLAN:
HEURISTIC, RULE BASED OPTIMIZATION

= Manipulating the query tree
= Example:

EMPLOYEE (EMPLOYEE ID, LAST_NAME, FIRST_NAME, BIRTH_DATE, ...
PROJECT (PROJECT ID, PNAME, ...)
WORKS_ON (PROJECT ID, EMPLOYEE ID)

select last name
from employee, works on, project
where employee.birth _date > '1957.12.31°
and works on.project _id = project.project id
and works _on.employee id = employee.employee id
and project.pname = "Aquarius’

26

CHOOSING THE EXECUTION PLAN:
HEURISTIC, RULE BASED OPTIMIZATION

= A possible relational algebra expression equivalent: "LASTNAME

TLAST NAME ((UBIRTH_DATE>"1957.12.31" (EMPLOYEE))

X EMPLOYEE ID=EMPLOYEE.EMPLOYEE 10 (WORKS_ON)
B _
PROJECT_ID=PROJECT.PROJECT_ID M pROJECT. 1D=PROJECT.PROJECT I

OpPNAME="Aquarius" (P ROJE CT)) /\

™ EMPLOYEE_ID=EMPLOYEE.EMPLOYEE _ID OPNAME= "Aquarius"

EMPLOYEE 97

OBIRTH_DATE>"1957.12.31"

CHOOSING THE EXECUTION PLAN:
HEURISTIC, RULE BASED OPTIMIZATION

= Goal: choosing the quickest equivalent

= Step 1: canonical format (Cartesian, selection, projection)

L AST_NAME

OPNAME = "Aquarius" A PROJECT_ID = PROJECT.PROJECT_ID AN EMPLOYEE_ID = EMPLOYEE.EMPLOYEE_ID A BIRTH_DATE > "1957.12.31"

X

CHOOSING THE EXECUTION PLAN:
HEURISTIC, RULE BASED OPTIMIZATION

TTLAST NAME

= Step 2: sinking selections

OpPROJECT_ID=PROJECT.PROJECT_ID

X
OEMPLOYEE _ID=EMPLOYEE.EMPLOYEE_ID OpPNAME= "Aquarius"

A
OBIRTH_DATE>"1957.12.31" @

29

CHOOSING THE EXECUTION PLAN:
HEURISTIC, RULE BASED OPTIMIZATION

T AST NAME

= Step 3:rearranging leaves

OEMPLOYEE _ID=EMPLOYEE.EMPLOYEE_ID

/X\

OpPROJECT_ID=PROJECT.PROJECT_ID OBIRTH_DATE>"1957.12.31"

”
“PNAME

30

CHOOSING THE EXECUTION PLAN:
HEURISTIC, RULE BASED OPTIMIZATION

TTLAST NAME

= Step 4:join

DqEMPLOYEE_ID=EMPLOYEE.EMPLOYEE_ID

T

NPRO]ECT_ ID=PROJECT.PROJECT_ID OBIRTH_DATE>"1957.12.31"

OpNAME="Aquarius"

31

CHOOSING THE EXECUTION PLAN:
HEURISTIC, RULE BASED OPTIMIZATION

TTLAST NAME

= Step 5: sinking projections

l><|EMPLOYEE_ID=EMPLOYEE.EMPL0YEE_ID

/\

TEMPLOYEE_ID TEMPLOYEE_ID, LAST_NAME

|

|>qPRO]ECT_ ID=PROJECT.PROJECT_ID OBIRTH_DATE>"1957.12.31"

TUPROJECT _ID TPROJECT_ID, EMPLOYEE_ID EMPLOYEE

OpNAME="Aquarius"
PROJECT

32

WHEN ARE TWO TREES
EQUIVALENT?

RELATIONAL ALGEBRA TRANSFORMATIONS I.

"Oc, nconne, (1) = O, (O‘Cz ((acn(r))))
oz, (05,0 = oc, (0, (M)

"Tlist, (7TList2 ((T[Listn (7")))) = TlList, (r)

'ﬂAl,Az,...,An(Uc(T)) = O¢ (ﬂAl,Az,...,An(T))

WHEN ARE TWO TREES
EQUIVALENT?

RELATIONAL ALGEBRA TRANSFORMATIONS II.
=T M. S=ES N, T
=0.(r™s)= (ac(r)) DM S

=7, (r X §) = (ﬂAl,...,An(T)) N (T[Bl,...,Bm(S))

= (r M, 5) =

Iy, <(7TA1,...,An,An+1,...,An+k(7")) N (T[Bl,...,Bm,Bm+1,...,Bm+p (S))>

Set operations (union, intersection) are commutative

Join, Cartesian product, union, and intersection are
assoclative:

(r0s)6t = r0(sOt)

34

WHEN ARE TWO TREES
EQUIVALENT?

RELATIONAL ALGEBRA TRANSFORMATIONS IILI.

=g-(rfs)= (ac(r)) 0 (O'C(S))
e, (r 60'5) = (m,(r) 6 (m,(5))

Further rules:
=c=a(c; ANey) = (Ac1) V (Acy)

=c==(cy Vey) =(Ac) A(=cy)

35

RULES, SUMMARY

= Conjuctions in selections are transformed to a series of selections.

= Selections are swapped with the other operations.
= Query tree leaves are re-arranged.

= Cartesian products and the selection (join) condition above them
are transformed to a single operation (theta join)

= Projections are swapped with the other operations

36

