
OPTIMIZATION OF
RELATIONAL QUERIES

Dr. Gajdos Sándor – Dr. Erős Levente

November 2014 – November 2021

BME–TMIT

CONTENTS

▪ Overview

▪ Catalog cost estimation

▪ Optimization approaches
▪ Cost based optimization

▪ Heuristic optimization

2

OVERVIEW

3

query
interpreter

and compiler

relational algebra

expression

optimizer

execution

plan

evaluator

engine
query

output

data
statistics

about data

STEPS

1. (Syntactical) analysis, compilation

Does it make sense?

Input: SQL statement

Result: relational algebra expression

2. Cost optimization

3. Evaluation

4

CATALOG BASED COST ESTIMATION

▪ The following statistical data is stored in the so-called
catalog
▪ Catalog data about relations

▪ Catalog data about indexes

▪ Query cost

▪ Cost is estimated based on catalog data.

5

CATALOG DATA ABOUT RELATIONS

▪ 𝑛𝑟: number of records in relation 𝑟

▪ 𝑏𝑟: number of blocks storing the records of relation 𝑟

▪ 𝑠𝑟: size of a record

▪ 𝑓𝑟: how many records fit in a data block

6

CATALOG DATA ABOUT RELATIONS

▪ 𝑉 𝐴, 𝑟 : how many different values attribute 𝐴 has in
relation r (cardinality).
▪ 𝑉 𝐴, 𝑟 = 𝜋𝐴(𝑟)

▪ If 𝐴 is a key, then 𝑉 𝐴, 𝑟 = 𝑛𝑟

▪ 𝑆𝐶 𝐴, 𝑟 : (Selection Cardinality) average number of
records that satisfy a selection condition.
▪ If 𝐴 is a key, then 𝑆𝐶 𝐴, 𝑟 = 1

▪ In general 𝑆𝐶 𝐴, 𝑟 =
𝑛𝑟

𝑉 𝐴,𝑟

▪ If the records of a relation are physically stored together,
then:

𝑏𝑟 =
𝑛𝑟
𝑓𝑟

7

CATALOG DATA ABOUT INDEXES

▪ 𝑓𝑖: number of pointers going out of a node in case of a
tree index, like B* tree

▪𝐻𝑇𝑖: number of index levels (Height of Tree)
▪ 𝐻𝑇𝑖 = log𝑓𝑖 𝑏𝑟 (B* tree)

▪ 𝐻𝑇𝑖 = 1 (hash)

▪ 𝐿𝐵𝑖: a number of leaf blocks (Lowest level index Block)

8

COST OF QUERY

Definition:

▪ Number of block reading and writing operations
from the disc (without writing out the result).

▪ Takes the most time by far – good metric
▪ By orders of magnitude more costly then performing

operations in the RAM, etc.

9

COST OF OPERATIONS – OUTLINE

▪ Selection

▪ Selection algorithms (basic, indexed, comparison based)

▪ complex selection

▪ Join

▪ Types

▪ Size estimation

▪ Join algorithms

▪ Other

▪ Filtering repetitions

▪ Union, intersection, subtraction

10

BASIC SELECTION ALGORITHMS (=)

A1: Linear search

▪ Cost:
𝐸𝐴1 = 𝑏𝑟

A2: Binary search

▪ Requirements:
▪ Blocks are located continuously on the disk

▪ The file is ordered by attribute A

▪ The selection condition is equality on attribute A

▪ Cost:

𝐸𝐴2 = log2 𝑏𝑟 + 1 +
𝑆𝐶(𝐴, 𝑟)

𝑓𝑟
− 1

11

INDEXED SEARCH ALGORITHMS

Primary index – requires the data file to be physically ordered by the
index attribute (search key). Everything else is a secondary index

A3: Using primary index, if the equality condition is defined on the
key

Cost: 𝐸𝐴3 = 𝐻𝑇𝑖 + 1

A4: Using primary index, if the equality condition is defined on a non-
key attribute (the primary index is on the non-key attribute)

Cost: 𝐸𝐴4 = 𝐻𝑇𝑖 +
𝑆𝐶 𝐴,𝑟

𝑓𝑟

A5: Using secondary index.

Cost: 𝐸𝐴5 = 𝐻𝑇𝑖 + 𝑆𝐶 𝐴, 𝑟

Cost: 𝐸𝐴5 = 𝐻𝑇𝑖 + 1, if 𝐴 is a key

12

COMPARISON BASED SELECTION – A  v(R)

Estimation of the number of result records:

▪ If 𝑣 is unknown:
𝑛𝑟

2

▪ If 𝑣 is known, and the distribution is uniform:

𝑛average = 𝑛𝑟 ⋅
𝑣 − min 𝐴, 𝑟

max 𝐴, 𝑟 − min 𝐴, 𝑟

13

COMPARISON BASED SELECTION – A  v(R)

A6: With primary index.

▪ If 𝑣 is unknown:

Cost: 𝐸𝐴6 = 𝐻𝑇𝑖 +
𝑏𝑟

2

▪ If 𝑣 is known:

Cost: 𝐸𝐴6 = 𝐻𝑇𝑖 +
𝑐

𝑓𝑟
,

Where 𝑐 is the number of records for which 𝐴 ≤ 𝑣

A7: With secondary index

Cost: 𝐸𝐴7 = 𝐻𝑇𝑖 +
𝐿𝐵𝑖

2
+

𝑛𝑟

2

14

JOIN OPERATION

Definition:
𝑟1 ⋈𝜃 𝑟2 = 𝜎𝜃 𝑟1 × 𝑟2

Types:

▪ Natural join
𝑟1 ⋈ 𝑟2 = 𝜋𝐴∪𝐵 𝜎𝑅1.𝑋=𝑅2.𝑋 𝑟1 × 𝑟2

▪ Outer join
▪ Left outer join: 𝑟1 ∗ + 𝑟2
▪ Right outer join: 𝑟1 + ∗ 𝑟2
▪ Full outer join: 𝑟1 + ∗ + 𝑟2

▪ Theta join:
𝑟1 ⋈𝜃 𝑟2 = 𝜎𝜃 𝑟1 × 𝑟2

15

JOIN OPERATION: NESTED LOOP JOIN

Given are two relations, 𝑟 and 𝑠:

FOR each record 𝑡𝑟 ∈ 𝑟 DO BEGIN

FOR each record 𝑡𝑠 ∈ 𝑠 DO BEGIN

test if pair 𝑡𝑟 , 𝑡𝑠 , fulfills join condition 𝜃

IF yes, THEN add record 𝑡𝑟 . 𝑡𝑠 to the result

END

END

▪ „worst case” cost: 𝑛𝑟 ⋅ 𝑏𝑠 + 𝑏𝑟

▪ If at least one relation fits in the memory, then its cost is: 𝑏𝑟 + 𝑏𝑠

16

JOIN OPERATION: BLOCK NESTED LOOP JOIN

FOR each block 𝑏𝑟 ∈ 𝑟 DO BEGIN

FOR each block 𝑏𝑠 ∈ 𝑠 DO BEGIN

FOR each record 𝑡𝑟 ∈ 𝑏𝑟 DO BEGIN

FOR each record 𝑡𝑠 ∈ 𝑏𝑠 DO BEGIN

test pair 𝑡𝑟 , 𝑡𝑠

END

END

END

END

▪ „worst-case” cost: 𝑏𝑟 ⋅ 𝑏𝑠 +𝑏𝑟

▪ with a lot of memory: 𝑏𝑟 + 𝑏𝑠

17

JOIN OPERATION: INDEXED NESTED LOOP JOIN

For one of the relations (𝑠) we have an index

Let us put the indexed relation to the inner cycle of the first algorithm

⟹ Using the index, the search can be performed at a lower cost

Cost:
𝑏𝑟 + 𝑛𝑟 ⋅ 𝑐,

where 𝑐 is the cost of selection on s.

18

FURTHER JOIN IMPLEMENTATIONS

▪ sorted merge join
▪ order relations by the attributes provided in the join condition

▪ hash join
▪ one of the relations is accessed through a hash table when looking

for its records matching the records of the other relation

19

FURTHER OPERATIONS

▪ Filtering repetitions (ordering, and then deleting)

▪ Projection (projection, then filtering repetitions)

▪ Union (ordering of both relations, and filtering duplications during
merge)

▪ Intersection (ordering both relations, then leaving only the
repetitions during merge)

▪ Subtraction (ordering both relations, and then during merge, we
only leave those elements in the result set, which are only present in
the first relation)

20

METHODS FOR EVALUATING EXPRESSIONS

▪ Materialization
▪ Evaluating a single operation of a complex expression at a time

▪ Pipelining
▪ Multiple operations are evaluated in parallel

▪ The result of an opeartion is immediately transferred to the input
of the next operation

21

METHODS FOR EVALUATING EXPRESSIONS:
MATERIALIZATION

▪ Canonical format:
𝜋𝑐𝑢𝑠𝑡𝑜𝑚𝑒𝑟_𝑛𝑎𝑚𝑒 𝜎𝑏𝑎𝑙𝑎𝑛𝑐𝑒<2500 𝑎𝑐𝑐𝑜𝑢𝑛𝑡 ⋈ 𝑐𝑢𝑠𝑡𝑜𝑚𝑒𝑟

▪ Query tree:

▪ Final cost: cost of operations + cost of storing sub-results

▪ Advantage: Easy implementation

▪ Drawback: Many storage operations (block operations)

22

pcustomer_name

customer

account

balance < 2500

METHODS FOR EVALUATING EXPRESSIONS:
PIPELINING

• Parallel evaluation

• Operations create sub-results for the following operation, based on
the sub-results of the preceding operation

• Does not calculate the whole relation (sub-result) at a time

Advantage:

▪ No temporary storage needed

▪ Low memory requirement

Drawback:

▪ Narrows down the algorithms that can be used

23

CHOOSING THE EXECUTION PLAN

Many execution plans are possible for the
same result

Questions to be answered:

• Which operations?

• In what order?

• By which algorithm?

• By which workflow?

24

One exact
execution plan:

CHOOSING THE EXECUTION PLAN:
COST-BASED OPTIMIZATION

Greedy and wrong strategy:

▪ Listing all possible equivalent execution plans

▪ Evaluating each plan

▪ Choosing the optimal one

Example: In case of expression 𝑟1 ⋈ 𝑟2 ⋈ 𝑟3 → 12 equivalent expressions

In more general: to join 𝑛 relations,
2(𝑛−1) !

𝑛−1 !
equivalent expressions exist.

This would mean too much load for the system.

Solution: Heuristic cost-based optimization

25

CHOOSING THE EXECUTION PLAN:
HEURISTIC, RULE BASED OPTIMIZATION

▪ Manipulating the query tree

▪ Example:

EMPLOYEE (EMPLOYEE_ID, LAST_NAME, FIRST_NAME, BIRTH_DATE, …)

PROJECT (PROJECT_ID, PNAME, …)

WORKS_ON (PROJECT_ID, EMPLOYEE_ID)

select last_name
from employee, works_on, project

where employee.birth_date > '1957.12.31'
and works_on.project_id = project.project_id
and works_on.employee_id = employee.employee_id
and project.pname = 'Aquarius'

26

▪ A possible relational algebra expression equivalent:

𝜋𝐿𝐴𝑆𝑇_𝑁𝐴𝑀𝐸 ൬ 𝜎𝐵𝐼𝑅𝑇𝐻_𝐷𝐴𝑇𝐸>"1957.12.31" 𝐸𝑀𝑃𝐿𝑂𝑌𝐸𝐸

⋈𝐸𝑀𝑃𝐿𝑂𝑌𝐸𝐸_𝐼𝐷=𝐸𝑀𝑃𝐿𝑂𝑌𝐸𝐸.𝐸𝑀𝑃𝐿𝑂𝑌𝐸𝐸_𝐼𝐷 𝑊𝑂𝑅𝐾𝑆_𝑂𝑁
⋈𝑃𝑅𝑂𝐽𝐸𝐶𝑇_ 𝐼𝐷=𝑃𝑅𝑂𝐽𝐸𝐶𝑇.𝑃𝑅𝑂𝐽𝐸𝐶𝑇_𝐼𝐷

ቁ𝜎𝑃𝑁𝐴𝑀𝐸="𝐴𝑞𝑢𝑎𝑟𝑖𝑢𝑠" 𝑃𝑅𝑂𝐽𝐸𝐶𝑇

27
EMPLOYEE

WORKS_ON PROJECT

𝜋𝐿𝐴𝑆𝑇_𝑁𝐴𝑀𝐸

⋈𝐸𝑀𝑃𝐿𝑂𝑌𝐸𝐸_𝐼𝐷=𝐸𝑀𝑃𝐿𝑂𝑌𝐸𝐸.𝐸𝑀𝑃𝐿𝑂𝑌𝐸𝐸_𝐼𝐷

𝜎𝐵𝐼𝑅𝑇𝐻_𝐷𝐴𝑇𝐸>"1957.12.31"

𝜎𝑃𝑁𝐴𝑀𝐸="𝐴𝑞𝑢𝑎𝑟𝑖𝑢𝑠"

⋈𝑃𝑅𝑂𝐽𝐸𝐶𝑇_ 𝐼𝐷=𝑃𝑅𝑂𝐽𝐸𝐶𝑇.𝑃𝑅𝑂𝐽𝐸𝐶𝑇_𝐼𝐷

CHOOSING THE EXECUTION PLAN:
HEURISTIC, RULE BASED OPTIMIZATION

▪ Goal: choosing the quickest equivalent

▪ Step 1: canonical format (Cartesian, selection, projection)

28

𝜎𝑃𝑁𝐴𝑀𝐸 = "𝐴𝑞𝑢𝑎𝑟𝑖𝑢𝑠" ∧ 𝑃𝑅𝑂𝐽𝐸𝐶𝑇_𝐼𝐷 = 𝑃𝑅𝑂𝐽𝐸𝐶𝑇.𝑃𝑅𝑂𝐽𝐸𝐶𝑇_𝐼𝐷 ∧ 𝐸𝑀𝑃𝐿𝑂𝑌𝐸𝐸_𝐼𝐷 = 𝐸𝑀𝑃𝐿𝑂𝑌𝐸𝐸.𝐸𝑀𝑃𝐿𝑂𝑌𝐸𝐸_𝐼𝐷 ∧ 𝐵𝐼𝑅𝑇𝐻_𝐷𝐴𝑇𝐸 > "1957.12.31"

𝜋𝐿𝐴𝑆𝑇_𝑁𝐴𝑀𝐸

EMPLOYEE WORKS_ON

PROJECT×

×

CHOOSING THE EXECUTION PLAN:
HEURISTIC, RULE BASED OPTIMIZATION

29

×

EMPLOYEE

WORKS_ON

PROJECT

𝜋𝐿𝐴𝑆𝑇_𝑁𝐴𝑀𝐸

𝜎𝐸𝑀𝑃𝐿𝑂𝑌𝐸𝐸_𝐼𝐷=𝐸𝑀𝑃𝐿𝑂𝑌𝐸𝐸.𝐸𝑀𝑃𝐿𝑂𝑌𝐸𝐸_𝐼𝐷

𝜎𝐵𝐼𝑅𝑇𝐻_𝐷𝐴𝑇𝐸>"1957.12.31"

𝜎𝑃𝑁𝐴𝑀𝐸="𝐴𝑞𝑢𝑎𝑟𝑖𝑢𝑠"

𝜎𝑃𝑅𝑂𝐽𝐸𝐶𝑇_ 𝐼𝐷=𝑃𝑅𝑂𝐽𝐸𝐶𝑇.𝑃𝑅𝑂𝐽𝐸𝐶𝑇_𝐼𝐷

×

CHOOSING THE EXECUTION PLAN:
HEURISTIC, RULE BASED OPTIMIZATION

▪ Step 2: sinking selections

30

×

PROJECT

WORKS_ON

EMPLOYEE

𝜋𝐿𝐴𝑆𝑇_𝑁𝐴𝑀𝐸

𝜎𝑃𝑅𝑂𝐽𝐸𝐶𝑇_ 𝐼𝐷=𝑃𝑅𝑂𝐽𝐸𝐶𝑇.𝑃𝑅𝑂𝐽𝐸𝐶𝑇_𝐼𝐷

𝜎𝑃𝑁𝐴𝑀𝐸="𝐴𝑞𝑢𝑎𝑟𝑖𝑢𝑠"

𝜎𝐵𝐼𝑅𝑇𝐻_𝐷𝐴𝑇𝐸>"1957.12.31"

𝜎𝐸𝑀𝑃𝐿𝑂𝑌𝐸𝐸_𝐼𝐷=𝐸𝑀𝑃𝐿𝑂𝑌𝐸𝐸.𝐸𝑀𝑃𝐿𝑂𝑌𝐸𝐸_𝐼𝐷

×

CHOOSING THE EXECUTION PLAN:
HEURISTIC, RULE BASED OPTIMIZATION

▪ Step 3: rearranging leaves

31
PROJECT

WORKS_ON EMPLOYEE

𝜋𝐿𝐴𝑆𝑇_𝑁𝐴𝑀𝐸

⋈𝑃𝑅𝑂𝐽𝐸𝐶𝑇_ 𝐼𝐷=𝑃𝑅𝑂𝐽𝐸𝐶𝑇.𝑃𝑅𝑂𝐽𝐸𝐶𝑇_𝐼𝐷

𝜎𝑃𝑁𝐴𝑀𝐸="𝐴𝑞𝑢𝑎𝑟𝑖𝑢𝑠"

𝜎𝐵𝐼𝑅𝑇𝐻_𝐷𝐴𝑇𝐸>"1957.12.31"

⋈𝐸𝑀𝑃𝐿𝑂𝑌𝐸𝐸_𝐼𝐷=𝐸𝑀𝑃𝐿𝑂𝑌𝐸𝐸.𝐸𝑀𝑃𝐿𝑂𝑌𝐸𝐸_𝐼𝐷

▪ Step 4: join

CHOOSING THE EXECUTION PLAN:
HEURISTIC, RULE BASED OPTIMIZATION

32

PROJECT

WORKS_ON

EMPLOYEE

𝜋𝐿𝐴𝑆𝑇_𝑁𝐴𝑀𝐸

⋈𝑃𝑅𝑂𝐽𝐸𝐶𝑇_ 𝐼𝐷=𝑃𝑅𝑂𝐽𝐸𝐶𝑇.𝑃𝑅𝑂𝐽𝐸𝐶𝑇_𝐼𝐷

𝜎𝑃𝑁𝐴𝑀𝐸="𝐴𝑞𝑢𝑎𝑟𝑖𝑢𝑠"

𝜎𝐵𝐼𝑅𝑇𝐻_𝐷𝐴𝑇𝐸>"1957.12.31"

⋈𝐸𝑀𝑃𝐿𝑂𝑌𝐸𝐸_𝐼𝐷=𝐸𝑀𝑃𝐿𝑂𝑌𝐸𝐸.𝐸𝑀𝑃𝐿𝑂𝑌𝐸𝐸_𝐼𝐷

𝜋𝑃𝑅𝑂𝐽𝐸𝐶𝑇_𝐼𝐷 𝜋𝑃𝑅𝑂𝐽𝐸𝐶𝑇_𝐼𝐷, 𝐸𝑀𝑃𝐿𝑂𝑌𝐸𝐸_𝐼𝐷

𝜋𝐸𝑀𝑃𝐿𝑂𝑌𝐸𝐸_𝐼𝐷 𝜋𝐸𝑀𝑃𝐿𝑂𝑌𝐸𝐸_𝐼𝐷, 𝐿𝐴𝑆𝑇_𝑁𝐴𝑀𝐸

▪ Step 5: sinking projections

CHOOSING THE EXECUTION PLAN:
HEURISTIC, RULE BASED OPTIMIZATION

WHEN ARE TWO TREES
EQUIVALENT?
RELATIONAL ALGEBRA TRANSFORMATIONS I.

▪𝜎𝑐1∧𝑐2∧⋯∧𝑐𝑛 𝑟 ≡ 𝜎𝑐1 𝜎𝑐2 … 𝜎𝑐𝑛 𝑟 …

▪𝜎𝑐1 𝜎𝑐2 𝑟 ≡ 𝜎𝑐2 𝜎𝑐1 𝑟

▪𝜋𝐿𝑖𝑠𝑡1 𝜋𝐿𝑖𝑠𝑡2 … 𝜋𝐿𝑖𝑠𝑡𝑛 𝑟 … ≡ 𝜋𝐿𝑖𝑠𝑡1 𝑟

▪𝜋𝐴1,𝐴2,…,𝐴𝑛 𝜎𝑐 𝑟 ≡ 𝜎𝑐 𝜋𝐴1,𝐴2,…,𝐴𝑛 𝑟

33

WHEN ARE TWO TREES
EQUIVALENT?
RELATIONAL ALGEBRA TRANSFORMATIONS II.

▪ 𝑟 ⋈𝑐 𝑠 ≡ 𝑠 ⋈𝑐 𝑟

▪ 𝜎𝑐 𝑟 ⋈ 𝑠 ≡ 𝜎𝑐 𝑟 ⋈ 𝑠

▪ 𝜋𝐿 𝑟 ⋈𝑐 𝑠 ≡ 𝜋𝐴1,…,𝐴𝑛 𝑟 ⋈𝑐 𝜋𝐵1,…,𝐵𝑚 𝑠

▪ 𝜋𝐿 𝑟 ⋈𝑐 𝑠 ≡

𝜋𝐿 𝜋𝐴1,…,𝐴𝑛,𝐴𝑛+1,…,𝐴𝑛+𝑘 𝑟 ⋈𝑐 𝜋𝐵1,…,𝐵𝑚,𝐵𝑚+1,…,𝐵𝑚+𝑝
𝑠

Set operations (union, intersection) are commutative

Join, Cartesian product, union, and intersection are
associative:

𝑟𝜃𝑠 𝜃𝑡 ≡ 𝑟𝜃 𝑠𝜃𝑡
34

WHEN ARE TWO TREES
EQUIVALENT?
RELATIONAL ALGEBRA TRANSFORMATIONS III.

▪ 𝜎𝐶 𝑟 𝜃 𝑠 ≡ 𝜎𝐶 𝑟 𝜃 𝜎𝐶 𝑠

▪ 𝜋𝐿 𝑟 𝜃 𝑠 ≡ 𝜋𝐿 𝑟 𝜃 𝜋𝐿(𝑠)

Further rules:

▪ 𝑐 ≡ ¬ 𝑐1 ∧ 𝑐2 ≡ ¬𝑐1 ∨ ¬𝑐2

▪ 𝑐 ≡ ¬ 𝑐1 ∨ 𝑐2 ≡ ¬𝑐1 ∧ ¬𝑐2

35

RULES, SUMMARY

▪ Conjuctions in selections are transformed to a series of selections.

▪ Selections are swapped with the other operations.

▪ Query tree leaves are re-arranged.

▪ Cartesian products and the selection (join) condition above them
are transformed to a single operation (theta join)

▪ Projections are swapped with the other operations

36

